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Abstract

An investigation of mixed convection and flow reversal in a vertical annular duct is presented with reference to
laminar and fully-developed flow of a power-law fluid. The boundary surfaces are supposed to be isothermal, with
unequal temperatures. The momentum balance and the energy balance equations as well as the viscous stress
constitutive equation are solved analytically in order to obtain the velocity field, the viscous stress field and the
temperature field. First, two special cases are analyzed: mixed convection of a Newtonian fluid; forced convection of
a power-law fluid. Then, in the general case, the evaluation of the friction factors is employed to determine the
conditions for the occurrence of flow reversal, for fixed values of the power-law index and of the ratio between the
duct inner and outer radii. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many industrial applications involve paints, glues,
inks, soap as well as suspensions such as coal-water
slurries. As is well known, these fluids display a
behavior definitely different from that of Newtonian
fluids. Several papers dealing with the heat transfer
of non-Newtonian fluids in ducts have appeared in
the literature. Reviews of the most important results
obtained for internal flow convection of non-
Newtonian fluids are available in the literature [1—
5]. Recently, some novel investigations on laminar
flow forced convection of non-Newtonian fluids in
ducts have been presented [6—15]. Gao and Hartnett

E-mail address: antonio.barletta@mail.ing.unibo.it (A.
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[6] are concerned with the fully developed forced
convection of power-law fluids in rectangular ducts.
Capobianchi and Irvine [7] provide a numerical
evaluation of the velocity and temperature profiles
for the fully developed forced convection of a modi-
fied power-law fluid in an annular duct. Prusa and
Manglik [8] describe a finite difference solution of
the classical Nusselt-Graetz problem in a circular
duct, with reference to a power-law fluid. The finite
element method is employed by Etemad and
Mujumdar [9] to obtain a solution for the simul-
taneously-developing laminar forced convection in a
semicircular duct for a power-law fluid with a tem-
perature-dependent consistency index. In Ref. [10],
an analysis of the boundary conditions which ensure
the existence of a thermally developed region in the
case of laminar forced convection with viscous dissi-
pation is performed, with reference to power-law
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Nomenclature

a, b,w, z dummy complex variables

B.(a,b) incomplete Euler beta function

C(m,y,A) root of Eq. (22)

D hydraulic diameter, D =2Ry(1 —y)
(m)

fi, inner and outer friction factors

defined by Eq. (17)
2Fi(a, b; w; z) hypergeometric function

g modulus of the gravitational accelera-
tion (m s~2)

Gr Grashof number defined by Eq. (9)

m inverse of the power-law index

p fluid pressure (Pa)

P difference between the pressure and
the  hydrostatic  pressure, P =
P+ pogX (Pa)

R radial coordinate (m)

dimensionless radial coordinate

defined by Eq. (9)

-

Ry, R, inner and outer radii of the duct (m)

Re Reynolds number defined by Eq. (9)

T temperature (K)

To mean temperature in a duct section
(K)

T, T, inner and outer wall temperatures
(K)

U axial component of velocity (m s™')

Uy reference velocity defined by Eq. (8)
(ms™")

U melan velocity in a duct section (m
)

u dimensionless velocity defined by Eq.
(€]

Umax maximum dimensionless velocity in a
duct section

i mean dimensionless velocity in a duct
section

V radial component of velocity (m s~

X axial coordinate (m)

p thermal expansion coefficient (K™!)

Y dimensionless parameter defined by
Eq. (9)

I'(z) Euler gamma function

n consistency factor (Pa s'/™)

0 dimensionless temperature defined by
Eq. (9)

A dimensionless parameter defined by
Eq. (9)

Ay, A threshold values of A for the onset of
flow reversal

p mass density (kg m™)

Po mass density at temperature 7y (kg
m™?)

G dimensionless shear stress defined by
Eq. 9)

T, TRX, TXR shear stresses (Pa)

w dimensionless parameter defined by
Eq. 9)

fluids in circular ducts. Min et al. [11,12] provide a
wide analysis of forced convection in a circular duct
for a Bingham plastic. In particular, in Refs.
[11,12], the fully developed and the thermally devel-
oping regimes are studied by employing analytical
methods, namely Frobenius method and separation
of variables, while the hydrodynamically developing
regime is analyzed by a numerical technique based
on the Crank—Nicolson scheme. Khellaf and Lauriat
[13] evaluate analytically both the bulk temperature
and the local Nusselt number for the thermally
developing forced convection either in a parallel-
plate channel or in a circular duct, with reference
to a power-law fluid and to a boundary condition
of uniform wall temperature. By employing a finite
integral transform technique, Lawal and Kalyon [14]
investigate forced convection flow with viscous dissi-
pation for a Herschel-Bulkley fluid flowing between
two parallel plates in relative motion. Olek [15]
develops a general analytical method to obtain the
temperature field in the thermal entrance region of

a circular or parallel-plate duct with convective
boundary conditions. Olek’s solution holds for lami-
nar forced convection even if axial heat conduction
in the fluid cannot be neglected and can be
employed for an arbitrary fully developed velocity
profile, i.e. for an arbitrary Newtonian or non-New-
tonian fluid.

The effect of buoyancy forces in non-Newtonian
fluid flow has been investigated by Jones and Ing-
ham [16] and by Ingham and Jones [17]. In Refs.
[16,17], a study of the mixed convection flow in the
entrance region of a vertical parallel-plate channel is
performed. Reference is made either to uniform wall
temperatures [16] or to linearly varying wall tem-
peratures [17]. In both cases, solutions for the
streamfunction, vorticity and temperature fields are
determined by employing a finite difference method.

Recently, an analytical solution for the velocity pro-
files of a power-law fluid in the fully developed region
of a parallel-plate vertical channel has been obtained
in the case of mixed convection with asymmetric and
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uniform wall temperatures [18]. Moreover, in the same
paper, the conditions for the occurrence of flow rever-
sal are determined both for upward flow and for
downward flow. Indeed, an extension of the analysis
performed in Ref. [18], to investigate mixed convection
flows in vertical annular ducts appears as interesting.

The subject of mixed convection in vertical annular
ducts has been studied by several authors [19-22]. The
papers by Sherwin [19], Rokerya and Igbal [20], Mai-
tra and Sabba Raju [21] refer to Newtonian fluids and
to a uniform wall heat flux prescribed either on the
inner wall [19-21] or on the outer wall [20]. On the
other hand, in the paper by Kou and Huang [22], a
non-Darcian flow model is employed to investigate
mixed convection in a vertical annular duct filled with
a porous medium.

The aim of the present paper is to extend the math-
ematical model considered in Ref. [18], as well as the
analytical method employed to solve the governing
equations, in order to analyze the combined forced
and free flow of a power-law fluid in a vertical annular
duct. The analysis will be performed under the hypoth-
esis of laminar and fully developed flow. Moreover,
the duct walls will be supposed to be isothermal, with
different temperatures. In the following sections, it will
be pointed out that, both for Newtonian and non-
Newtonian fluids, the value of the pressure gradient
which is required to produce a given mass flow rate is
influenced by the buoyancy effect. On the other hand,
in Ref. [18] it is shown that, in the case of a vertical
parallel-plate channel, this feature occurs only for non-
Newtonian fluids, while Newtonian fluids display the
same relation between pressure gradient and mass flow

X
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Fig. 1. Drawing of the system.

rate both for forced convection and for mixed convec-
tion.

2. Formulation of the problem

In this section, the heat transfer problem is described
and the set of governing equations is expressed in a
dimensionless form.

Let us consider the vertical annular duct shown in
Fig. 1. The thermal boundary conditions are such that
the internal wall is isothermal with a temperature 77,
while the external wall is isothermal with a tempera-
ture 7>#T;. Viscous dissipation is neglected and the
flow is assumed to be steady, laminar and fully devel-
oped. The Boussinesq approximation and the mass
balance equation imply that the velocity field is sole-
noidal, while the condition of fully developed flow
implies that dU/0X = 0. Therefore, one can conclude
that U depends only on R and that V' is zero. More-
over, it can be inferred that the only nonvanishing
component of the viscous stress tensor is 7 = trx =
txr- The latter is assumed to be expressed by the Ost-
wald—De Waele constitutive equation, namely

dU (l—m)/mdU
T= '7‘ iR iR 1)
Eq. (1) implies that the case m < 1 corresponds to dila-
tant fluid behavior, while the case m > 1 corresponds
to pseudoplastic fluid behavior.

The buoyancy effect is accounted for by employing

the equation of state
p = po[1 = B(T = Tv)], @)

where p, and f are assumed to be constant and 7} is
chosen as the mean temperature in a duct section, i.e.

Ry

2
Ty=——— | TRdR. 3)
R22 - R12 JR

The choice of the reference temperature expressed by
Eq. (3) ensures the best conditions for the validity of
the Boussinesq approximation [23]. Let us assume that
the thermal conductivity of the fluid and the consist-
ency factor n are independent of temperature. Since 71
is a constant, Eq. (1) implies that t depends only on R.
The momentum balance in the radial direction yields
dP/dR =0, while the momentum balance in the X-
direction can be expressed as

dp 1 d
gBpo(T — To) — de'f'Ede(RT)—O- “)
If both sides of Eq. (4) are derived with respect to X,
multiplied by R and then integrated with respect to R
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in the interval Ry < R<R;, on account of Eq. (3), one
can conclude that

d’P
dx2— 7

AT  dT,
X = dx ®)
Eq. (5) implies that dP/dX is a constant. Moreover,
since d7/0X is zero at the boundary walls and since
Eq. (5) ensures that d7/0X does not depend on R, one
can conclude that 7 is independent of X. Therefore,
the energy balance equation yields

d dT
It can be easily proved that Eq. (1) can be rewritten as
dUu 1 /| \"!
Y 1) ™
dR n\1n
If one chooses the reference velocity
2\" ap|"'dp
Uy = —( 2 Dm+l - bl 8
0 (n) ax| ax @®
and defines the dimensionless quantities
Unl U, (mfl)/le/m
Re = poUo|Uo| i
n
gBPZ(T2 - T )l U0|2(m—1)/mD(m+2)/m
Gr = 0 5 s
n
0— T-T,
-1
R Ry U To— T,
r=—, V=%, U=, = 5
R, R, Uy n-T
©)
2Ret Gr
o=——, A=—,
poU g Re

the governing Egs. (4), (6) and (7) can be rewritten as

2(1 — y)%(m) =—r2A0+ 1), (10)
d( do
du olo|"! (12)

ar 21 —y)

Eqgs. (8) and (9) allow one to conclude that a downward
gradient flow (dP/dx < 0) corresponds to Uy > 0 and
Re > 0, while an upward gradient flow (dP/dx > 0) cor-
responds to Uy < 0, Re < 0. Then, for downward gra-

dient flow, the parameter A is positive if T, > T,
while it is negative if 7> < T;. Obviously, the opposite
occurs in the case of upward gradient flow.

It is easily verified that the dimensionless fields are
subjected to the boundary conditions

uy)y=u(l)=0, 0p)=-ow, 01)=1-o. (13)

Moreover, Eq. (2) implies that the dimensionless tem-
perature 0 must fulfil the constraints

1
J 0(ryr dr = 0. (14)

/

If the ratio y = R|/R», the inverse of the power-law
index m and the parameters

D —
A Gr _ gpD(T> Tl)Re
Re U&

(15)

are prescribed, the solution of Egs. (10)—(14) allows
one to obtain u(r), 0(r), o(r) and the parameter w. Let
us define the dimensionless parameter u as

_ U 2
= o= -2 L u(ryr dr. (16)

Obviously, the ratio u between the mean velocity in a
channel section U and the reference velocity U, may
depend not only on m and 7y, but also on A. In other
words, the mass flow rate which occurs for a given
value of the vertical pressure gradient may be influ-
enced by the buoyancy effect.

The Fanning friction factors are defined as

©(Ry) a(y)
=2 = =-2
Y pOU()2 Re’ %

‘E(Rz) _ (T(l)
Wi~ Re (17)

As a consequence of Eqs. (14) and (17), if one inte-
grates both sides of Eq. (10) with respect to r in the
interval [y, 1], one is led to a relation between the fric-
tion factors, namely

1+,
fr=-2t

1re (18)
Moreover, as a consequence of the no-slip conditions
expressed in Eq. (13), an integration of both sides of
Eq. (12) with respect to r in the interval [y, 1] yields a
constraint on o(r), namely

1
J a(r)|e()|" ! dr = 0. (19)
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3. Evaluation of the velocity and stress fields

In this section, the dimensionless temperature, shear
stress and velocity are determined by solving analyti-
cally Egs. (10)—(14). Moreover, the special cases of
mixed convection for Newtonian fluids and of forced
convection are discussed.

One can easily integrate Eq. (11), so that Egs. (14)
and (16) allow one to obtain the dimensionless tem-
perature distribution and the parameter w,

2C(m, y, A) — 7> Ay
flRe: 2 )
(1 —-7) 21 =) (1 +7y)
1 -2C(m, vy, A Ay?
fsRe = tm, 3, 4) _ ! . (24)
41—y 21—y +7y)

The solution of Eq. (22) can be easily determined for
m = 1. In fact, for Newtonian fluids, one obtains

cd,; A)——l_vz[l—i— 4 ] 5)

NI G R S T g ey |

(r) = Sy 1—92 2In@)

(20) In the special case m = 1, Egs. (21), (23) and (25) yield

o= 1 + L the dimensionless velocity profile

1—72 " 2In®y)
u(r) = (1- rz)ln(y) - (l - yz)ln(r) 4 (1 - yz)[l —y2— 21‘21n(y)]ln(r) —(1- 1'2)[1 —y2 = 2y21n(y)]1n(y) (26)
32(1 — 7)%In(y) 32(1 =)’ (1+p)[Inm)]°

Then, Eqgs. (10) and (20) allow one to obtain an ex-
pression of a(r), namely

a(r) =

4r(1 —y) 2(1 =y \Iny)  1—92
2n

2C(m, y, A) —r? Ar In(r 2
(m. . M) =1 (()+ ] )

where C(m, y, A) is an integration constant. For given
values of the parameters m, y and A, the value of this
constant can be determined by solving Eq. (19). More
precisely, if one substitutes Eq. (21) in Eq. (19), then
one obtains C(m, 7y, A) as the solution of the equation

1 - m2
J 20— 22 ( 20 L T N e 2
y Iny) = 1-7
5 m—1
In(r) Y dr
2 _— —_— =
+24r <1n(v) +7 _yz) = =0 (22)

After having determined o(r) by employing Egs. (21)
and (22), the dimensionless velocity distribution is
obtained as the solution of Eq. (12) which fulfils the
no-slip conditions expressed by Eq. (13), namely

u(r) = !

T J ool dr, 23)

On account of Egs. (17) and (21), the friction factors
f1 and f, can be expressed as

fiRe =

On account of Egs. (16) and (26), the mean dimension-
less velocity in a channel section is expressed as

1 =92+ (1+72)Inw)
64(1 —y)zln(y)

u=

AZ(] - y2)2+(1 —y*)In@y) — 4}?2[ln(y)]2

@7
128(1 — (1 +)[In()]?

Eq. (27) reveals that, for a Newtonian fluid, the par-
ameter u depends on A. However, in the limit y—1,
this parameter becomes independent of A and is equal
to 1/96. This result is in agreement with the analysis
presented in Ref. [18] with reference to a parallel plate
channel. Indeed, if y—1, the flow in an annular duct
becomes coincident with that in a parallel plate chan-
nel.

On account of Egs. (24) and (25), in the special case
m = 1, the friction factors can be expressed as

Y AR e
4(1 —v) 8yln(y)

A V I+
21—y A +y)  8yIne)* |
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B 1 1+y
SoRe =305 Sy
y? 1+
-4 - . 28
[Z(I—V)2(1+“/) 81n(v>2] 29

Another special case is obtained in the limit 4—0. In
this limit, the buoyancy effect becomes negligible and a
pure forced convection regime occurs. By employing
Eq. (21) with A—0, the integral on the right-hand side
of Eq. (23) can be evaluated analytically, so that one
obtains

C(m, y, 0)"

u(r) =
) 214+2m(] — m)(l _ y)l-*—m
% lfmF l—m _m.3_m. V2
T\ T T T T 2 C(m, y, 0)
1—m 3—m 2
_ e e .
2 | 7 m; 2 2Cm . 0)) |
2
if Com, 7, 0) >
C 0(l+m)/2
u(r) = (m, 7, 0)

25(1+,,,)/2(1 _ ,y)1+mr<3 -; m)

x [2F<1_Tm>l"(l +m)

1
—r(— %)F(Hm)
14+m 3+m
+ 2Bycm, . 0)/,'2<— — 1 +m>F( 3 )

1—m 3+m
— ZByZ/[QC(m, 7 0)] (T, 1 + m)F(T)}

72 2
if —< ) <—:
i 5 <C(m,y,0)< R

1

u(i’) = 22+3m(1 + m)(l - V)1+m

1+m
y2 -2 1
|:y C(m,y,O):| 2F1(1+m, +m

V2C(m, 7, 0) 27

2
.
L e 0))

r2—2C(m, 5,001 " 1 +m
|:’/’} 2F1(l—|—m, }

V2C(m, 7, 0) 27

r2

2

. i
2hml— — £ C(m, -
m; pTel ,y,O)) , if C(m,y,0) < 7

(29)

In Eq. (29), 2Fi(a, b; w; z) denotes the hypergeometric
function, I'(z) the Euler gamma function and B.(a, b)
the incomplete Euler beta function. The definitions of
these special functions are recalled in the Appendix A,
while their most important properties are treated in

0.016 ———

0‘014( ]

0.012}

0.01

N

0.008
0.006
0.004 |

0.018]

|

0.016

0.014

0.012

0.01 |

0 0.2 04 0.6 0.8 1

Y

Fig. 2. Plots of &t vs. 7 in the case m = 1.
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mathematical handbooks such as Gradshteyn and
Rhyzik [24]. It must be pointed out that an analysis of
the laminar and fully developed velocity profile for iso-
thermal flow of power-law fluids in annular ducts was
performed by Fredrickson and Bird [25]. However,
although these authors presented their solution in the
form of an integral similar to the one reported in Eq.
(23), they did not show that an expression in terms of
well known special functions could be obtained.

4. A special case: mixed convection of a Newtonian fluid

In this section, the special case of mixed convection
for Newtonian fluids, i.e. the case m = 1, is analyzed.
This analysis is performed by employing Egs. (25)—
(28).

In Figs. 2—4, the behavior of the dimensionless par-
ameters i, fiRe and foRe as functions of 7y is rep-
resented, for fixed values of A. In particular, in the
limit y—0, the mean dimensionless velocity # tends to
1/64, for any value of A. As 7 increases, Fig. 2 shows
that, for positive values of A, u reaches a minimum
and then increases towards the value for y—1, ie.
1/96. On the other hand, the plots of & vs. y for A4 <
—2 display the presence of a maximum for very small
values of y. By employing Eq. (27), it is easily shown
that, in the limit y— 1, the derivative of & with respect

2
15 ?
) !
A=0 ]
05
flRe 0 A=2
A=5

0 0.2 0.4 0.6 0.8 1

Fig. 3. Plots of fj Re vs. y in the case m = 1.

-0.4

Fig. 4. Plots of fyRe vs. y in the case m = 1.

to y is equal to A/1440. Moreover, in the limit y—0,
the derivative of & with respect to y tends to +oo for
A < =2 and to —oo for 4 > —2. As a consequence, a
value of y which corresponds to a minimum of the
mean dimensionless velocity exists for every positive
value of A, while a value of y which corresponds to a
maximum of # exists for every 4 < —2.

Fig. 2 clearly shows that, for a given 7, the dimen-
sionless parameter # is a decreasing function of A. In
other words, for a given axial pressure gradient, buoy-
ancy tends to increase the modulus of the mean fluid
velocity, either for upward gradient flow with 7, > T
or for downward gradient flow with 7, < T;. On the
contrary, the modulus of the mean velocity is reduced
by the buoyancy effect either in the case of downward
gradient flow with 7, > T} or in the case of upward
gradient flow with T, < Tj.

Figs. 3 and 4 display the behavior of the friction fac-
tors as functions of y both for positive and for negative
values of A. On account of Eq. (28), it is easily shown
that, in the limit y—0 and for every fixed value of A,
the parameter fijRe tends to 4+oo and the parameter
frRe tends to 1/4. For any given A<1, fiRe is a
strictly decreasing function of y. On the other hand, if
A > 1, the parameter f; Re is a non-monotonic function
of y and displays a minimum for a value of y which is
smaller and smaller as A increases. This behavior is
quite evident in Fig. 3, although in the case 4 = 10 the
range of the frame is not suitable to represent the
minimum reached by f] Re. By employing Eq. (28), it is
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easily shown that the parameter f;Re, considered as a
function of y for a fixed A, is strictly decreasing if
A< — 1, while it displays the occurrence of a minimum
for any A > —1. As is shown in Fig. 4, this minimum
can correspond to very small values of 7, as in the
cases A4 =2, 5 and 10. In these cases, if one excludes a
very narrow boundary of y =0, f,Re appears as a
monotonic increasing function of y. Fig. 3 shows that,
both for 4 =5 and for A4 = 10, f; Re becomes negative

direct flow
1.5

2l direct flow

Fig. 5. Drawing of the regions of flow reversal in the plane (y,
A) for the case m = 1. Frame (a) refers to flow reversal at the
inner boundary. Frame (b) refers to flow reversal at the outer
boundary.

0.5 0.6 0.7 0.8 0.9 1
r

Fig. 6. Plots of u/iui vs. r for y = 0.5 in the case m = 1.

even for small values of y. On the other hand, in Fig. 4,
negative values of f;Re are displayed for A4 = —5 and
for A = —10. As it can be easily verified by employing
Egs. (1) and (17), if fiRe becomes negative, a flow
reversal occurs next to the boundary R = R;. More-
over, if foRe becomes negative, a flow reversal occurs
next to the boundary R = R,. As is well known, flow
reversal occurs when there exists a region next to one
of the boundary walls where the quantity u/u is nega-
tive. Indeed, one can readily show that the onset of
flow reversal at a given boundary wall is accompanied
by a sign change of both the shear stress and the Fan-
ning friction factor at that boundary wall. An illus-
tration of the regions in the plane (y, A) which
correspond to flow reversal either at the inner or at the
outer boundary is reported in Fig. 5. The conditions
for flow reversal are easily deduced by means of Eq.
(28) and are as follows. For positive A, flow reversal
occurs at the inner boundary whenever

(l — yZ)[yZ —1- 2y21n(y)]ln(y)'

A > 5 5
(1=72)"=42[In()]

(30)

By employing inequality (30) as well as its graphical
representation in Fig. 5(a), it is easily verified that the
smallest threshold value of A which may yield a flow
reversal at the inner surface is A =2.480 and corre-
sponds to y = 0.3083. For negative A, the condition
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for flow reversal at the outer boundary is

(1- yz)[l —9242 ln(*,')]ln(y).
(1 —y2)2—4y2[1n(y)]2

[A] > (€2))

In this case, on account of inequality (31) and of
Fig. 5(b), the smallest threshold value of |A] is |A4]| = 3
and corresponds to the limit y— 1, i.e. to the limit of a
parallel-plate channel.

In Fig. 6, plots of the dimensionless velocity profiles
are reported for y = 0.5 and for some positive or nega-
tive values of the parameter A. This figure shows that,
both for A =5 and for A =10, the flow reversal
phenomena displayed at » = 0.5 are more pronounced
than those displayed at r =1 for 4 = —5 and for 4 =
—10. On the other hand, no flow reversal occurs for
A =2 and for A =—2. Moreover, these plots show
that, at the position r = (0.7584, the ratio u/u is unaf-

Table 1
Values of the parameters fj Re, f>Re and i, in the case A =0

fected by the value of A. Indeed, on account of Egs.
(26) and (27), it can be easily checked that a position r
such that the ratio u/u is independent of A exists for
every value of y. Fig. 6 clearly shows that, if A is posi-
tive, buoyancy increases the dimensionless velocity u/iu
next to r=1 and decreases u/u next to r=20.5.
Obviously, the reverse occurs for negative values of A.
This result is quite reasonable, since a positive value of
A corresponds either to a downward gradient flow
such that r =1 is the hot surface or to an upward gra-
dient flow such that r = 1 is the cold surface.

5. A special case: forced convection of a power-law fluid

In this section, the special case of forced convection
for power-law fluids, i.e. the case m#1 and A =0, is
analyzed. The analysis is performed by employing Egs.
(22), (24) and (29). More precisely, Eq. (22) is solved

m y fiRe frRe ux 10 m y fiRe foRe ux10

0.3 0.01 5.047 0.2020 0.6116 0.5 0.01 4.246 0.2100 0.3855
0.1 0.7166 0.2033 0.5948 0.1 0.6652 0.2085 0.3664
0.2 0.4619 0.2076 0.5892 0.2 0.4417 0.2117 0.3605
0.3 0.3749 0.2125 0.5864 0.3 0.3638 0.2159 0.3576
0.4 0.3308 0.2177 0.5848 0.4 0.3239 0.2204 0.3559
0.5 0.3041 0.2230 0.5838 0.5 0.2996 0.2252 0.3549
0.6 0.2861 0.2283 0.5832 0.6 0.2832 0.2301 0.3543
0.7 0.2733 0.2337 0.5828 0.7 0.2714 0.2350 0.3539
0.8 0.2636 0.2391 0.5826 0.8 0.2625 0.2400 0.3537
0.9 0.2560 0.2446 0.5825 0.9 0.2556 0.2450 0.3536
1 1/4 1/4 0.5825 1 1/4 1/4 0.3536

0.7 0.01 3.558 0.2169 0.2448 1.5 0.01 1.852 0.2340 4.088 x 1072
0.1 0.6220 0.2128 0.2271 0.1 0.5052 0.2245 3.501 x 1072
0.2 0.4246 0.2151 0.2219 0.2 0.3772 0.2246 3.340 x 1072
0.3 0.3544 0.2187 0.2195 0.3 0.3280 0.2266 3.263 x 1072
0.4 0.3181 0.2228 0.2180 0.4 0.3015 0.2294 3.219 x 1072
0.5 0.2958 0.2271 0.2172 0.5 0.2849 0.2325 3.193 x 1072
0.6 0.2807 0.2316 0.2166 0.6 0.2735 0.2359 3.177 x 1072
0.7 0.2698 0.2362 0.2163 0.7 0.2652 0.2393 3.166 x 1072
0.8 0.2616 0.2408 0.2161 0.8 0.2589 0.2429 3.161 x 1072
0.9 0.2551 0.2454 0.2160 0.9 0.2540 0.2464 3.158 x 1072
1 1/4 1/4 0.2160 1 1/4 1/4 3.157 x 1072

2.0 0.01 1.353 0.2390 1.340 x 1072 3.5 0.01 0.7610 0.2449 4761 x 107
0.1 0.4606 0.2289 1.113 x 1072 0.1 0.3854 0.2365 3.799 x 1074
0.2 0.3582 0.2284 1.049 x 1072 0.2 0.3240 0.2352 3.493 x 1074
0.3 0.3172 0.2298 1.019 x 1072 0.3 0.2972 0.2358 3.345 x 1074
0.4 0.2947 0.2321 1.001 x 1072 0.4 0.2819 0.2373 3.261 x 1074
0.5 0.2804 0.2348 9.910 x 1073 0.5 0.2719 0.2391 3.210 x 1074
0.6 0.2705 0.2377 9.845 x 1073 0.6 0.2648 0.2411 3.178 x 1074
0.7 0.2633 0.2407 9.804 x 1073 0.7 0.2596 0.2433 3.158 x 1074
0.8 0.2578 0.2438 9.781 x 1073 0.8 0.2557 0.2455 3.146 x 1074
0.9 0.2535 0.2469 9.769 x 1073 0.9 0.2525 0.2477 3.140 x 1074
1 1/4 1/4 9.766 x 1073 1 1/4 1/4 3.139 x 1074
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Fig. 7. Plots of u/it vs. r for y =0.2 and y = 0.5 in the case
A=0.

Table 2

numerically to determine C(m, y, 0). Then, the friction
factors and the dimensionless velocity are evaluated by
employing Egs. (24) and (29).

In Table 1, the values of fiRe, faRe and u are
reported for some values of m and of y. In particular,
the values of these parameters in the case y—1 are
obtained by employing the results for the parallel-plate
channel reported in Ref. [18]. This table reveals that,
both for dilatant and for pseudoplastic fluids, the fric-
tion factor fjRe is a decreasing function of y, while
f>Re is a non-monotonic function of y which presents
a minimum, as in the case m = 1 discussed in the pre-
ceding section. The behavior of fjRe is easily verified
by considering Fig. 7. In fact, one can check that, as
7 decreases, the dimensionless velocity undergoes a
steeper radial change in the neighborhood of r=7.
Another relevant feature of the data reported in
Table 1 is the following. For a given y, the friction fac-
tor f1Re decreases with m, while the other friction fac-
tor f, Re increases with m. Finally, Table 1 reveals that
both the change of fjRe with m at fixed y and the
change of fjRe with y at fixed m are more relevant
than the corresponding changes of f,Re, especially for
small values of y.

In Table 2, a comparison between the analytical ex-
pression of the velocity profile given by Eq. (29) and
the solution found by Fredrickson and Bird [25] is

Comparison between the values of uy,,/u obtained by employing Eq. (29) and those reported in Ref. [25]

m y Umax /U (present paper) umax /U (Ref. [25]) m y Umax /U (present paper) Umax /U (Ref. [25])

0.25 0.01 1.84502 1.869 0.5 0.01 1.75613 1.778
0.1 1.82375 1.803 0.1 1.70918 1.714
0.2 1.81391 1.815 0.2 1.69093 1.693
0.3 1.80846 1.810 0.3 1.68126 1.682
0.4 1.80513 1.806 0.4 1.67547 1.676
0.5 1.80302 1.803 0.5 1.67183 1.672
0.6 1.80167 1.802 0.6 1.66951 1.670
0.7 1.80082 1.802 0.7 1.66807 1.669
0.8 1.80032 1.800 0.8 1.66722 1.668
0.9 1.80007 1.800 0.9 1.66679 1.667
1 1.80000 - 1 1.66667 —

2.0 0.01 1.53972 1.540 4.0 0.01 1.36558 1.365
0.1 1.41859 1.419 0.1 1.28018 1.280
0.2 1.38041 1.380 0.2 1.24569 1.246
0.3 1.36124 1.361 0.3 1.22744 1.227
0.4 1.35003 1.350 0.4 1.21653 1.217
0.5 1.34308 1.344 0.5 1.20969 1.212
0.6 1.33869 1.340 0.6 1.20534 1.208
0.7 1.33596 1.337 0.7 1.20263 1.205
0.8 1.33437 1.336 0.8 1.20103 1.203
0.9 1.33356 1.334 0.9 1.20023 1.201
1 1.33333 - 1 1.20000 -
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reported. In this table, the values of the ratio wm.y /it
for m=0.25, 0.5, 2 and 4, computed by employing
Eq. (29), are compared with the corresponding values
given in Ref. [25]. The value of up,y is easily obtained
since, as one can readily infer by employing Eq. (12),
when u is maximum o vanishes. Indeed, if 4 =0, Eq.
(21) ensures that the radius r which corresponds to u =
Umax 18 equal to /2C(m, vy, 0). Table 2 reveals that a
very good agreement exists with the results obtained in
Ref. [25], the relative error being in any case less than
1.3%. The data for y—1 reported in Table 2 refer to
the solution in the case of a parallel-plate channel dis-
cussed in Ref. [18].

In Fig. 7, plots of u/u vs. r are supplied for m = 0.3,
1 and 3, with reference to y = 0.2 and 0.5. This figure
shows that the plots for y =0.5 have only a slight
asymmetry with respect to the mid position
r=(141y)/2=0.75, which is less evident in the case
of dilatant behavior (m =0.3) than in the case of
pseudoplastic behavior (m = 3). On the other hand,

Table 3
Values of A, and A/ for different values of m and y

y m A, A y m A, A

T

02 03 20998 47004 0.5 0.3 2.0795 3.0446

04 2.1760 5.0401 0.4 2.1630 3.2093
0.5 22465 5.3716 0.5 2.2404 3.3652
0.6 23118 5.6940 0.6 23123 3.5130
0.7 23725 6.0064 0.7 23794 3.6531
0.8 2.4293 6.3086 0.8 2.4421 3.7859
0.9 24825 6.6003 0.9 25009 3.9119
1.0 2.5324 6.8817 1.0 2.5562 4.0316
1.5 2.7431 8.1414 1.5 27896 4.5493
2.0 29061 9.1865 2.0 29704 49613
2.5 3.0367 10.0604 2.5 3.1152  5.2969
3.0 3.1440 10.7995 3.0 3.2341 5.5757
3.5 3.2341  11.4318 3.5 3.3338  5.8112
40 3.3110 11.9786 40 3.41838 6.0129
45 33775 12.4561 4.5 34922 6.1878
5.0 3.4356 12.8768 5.0 3.5563  6.3410
0.7 03 21824 2.6643 095 03 23403 2.4089
0.4 22749 2.7958 0.4 24455 2.5195
0.5 23608 29195 0.5 25437 2.6230
0.6 2.4410 3.0359 0.6 2.6355 2.7199
0.7 25159  3.1456 0.7 27216 2.8108
0.8 2.5861 3.2491 0.8 28024 2.8963
0.9 2.6520 3.3469 0.9 28785 2.9769
1.0 27140  3.4395 1.0 29503 3.0529
1.5 29768 3.8363 1.5 3.2555 3.3768
2.0 3.1810 4.1489 2.0 3.4939 3.6302
2.5 3.3449 4.4020 2.5 3.6856 3.8344
3.0 3.479 4.6113 3.0 3.8437 4.0028
3.5 3.5927 4.7876 3.5 39764 4.1443
40 3.6891 4.9382 4.0 4.0897 4.2651
45 37724 5.0686 4.5 41876 4.3696
5.0 3.8451 5.1828 5.0 42732 4.4609

the plots for y =0.2 are definitely asymmetric with
respect to the position r = (1 +7)/2 = 0.6. Indeed, for
y = 0.5, the position of the maximum dimensionless
velocity is r = 0.74436 if m = 0.3, r = 0.73553 if m = 1,
r=20.72397 if m=3. For y=0.2, the maximum
dimensionless velocity occurs at r = 0.57934 if m = 0.3,
r=0.54611if m =1, r = 0.50299 if m = 3.

6. Mixed convection of a power-law fluid

In this section, the general case of mixed convection
for power-law fluids is investigated. The analysis is per-
formed by employing Eqgs. (21)—(23). Eq. (22) is solved
numerically to determine C(m, y, A). Then, the dimen-
sionless velocity is evaluated by employing Egs. (21)
and (23).

It is easily verified that, for every choice of m and 7y,
there exist two positive real numbers A, and A4, such
that flow reversal at r =y occurs if and only if 4 > A,,
while flow reversal at r =1 occurs if and only if 4 <
—A,. In other words, for any given choice of m and 7,
the dimensionless shear stress at the inner boundary
a(y), i.e. the quantity fjRe, is positive if 4 < A, and
negative if 4 > A,. Moreover, for any given choice of
m and 7, the dimensionless shear stress at the outer
boundary o(1), i.e. the quantity —f>Re, is negative if
A > —A] and positive if 4 < —A]. The values of 4,

Fig. 8. Plots of u/u vs. r for y = 0.2 in the case m = 0.3.
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and A, are different and, for every m, tend to be equal
in the limit y—1. In fact, in this limit, one yields the
parallel-plate channel flow which, as is discussed in
Ref. [18], is endowed with a special symmetry linking
the upward gradient case (Re < 0) and the downward
gradient case (Re > 0). Values of A, and A, for given
m and 7y can be evaluated by employing Egs. (21), (22)
and are reported in Table 3. This table shows that the
difference between the values of A, and A, is specially
pronounced for pseudoplastic fluids at low values of
y. In any case, this difference becomes smaller and
smaller as y increases. A comparison between the
values of A, = A/, reported in Ref. [18], for a parallel-
plate channel, i.e. for the limit y—1, and the values of
A, and A reported in Table 3 for y =0.95 reveals a
fair agreement. More precisely, for each m, the value
of A, for y =0.95 is slightly lower than that for y—1,
while the value of A, for y =0.95 is slightly higher
than that for y— 1. For a given m, the change of A/
with y is much more sharp than that of A,. It is easily
verified that, for a fixed m, while A4, is a monotonic
decreasing function of y, A, is a non-monotonic func-
tion of y. In fact, for a given value of m, the qualitat- 05 06 07 08 09 1"
ive behavior of A, as a function of y is the same as r

that outlined in the preceding sections with reference
to Newtonian fluids and illustrated in Fig. 5(a). More
precisely, for a fixed value of m, it can be shown that
A, decreases for small y, reaches a minimum and then
increases.

Fig. 10. Plots of u/u vs. r for y = 0.5 in the case m = 0.3.

ulu

05 0.6 07 08 0.9 1
r

Fig. 9. Plots of u/u vs. r for y = 0.2 in the case m = 3. Fig. 11. Plots of u/it vs. r for y = 0.5 in the case m = 3.
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An analysis of Table 3 allows one to conclude that
the onset of a flow reversal at r = 1 requires an higher
wall temperature difference than the onset of a flow
reversal at r = y. Moreover, the smaller is the value of
7, the higher is the value of |A]| which yields a flow
reversal at r=1. Finally, it should be pointed out
that, for every y, both A, and A, are increasing func-
tions of m. As a consequence, dilatant fluids need
smaller values of |A]| than pseudoplastic fluids in order
to display flow reversal. This feature was already
pointed out with reference to parallel-plate channels
[18].

Figs. 8-11 display the dimensionless velocity u(r)/iu
for different values of A, with reference either to a
dilatant fluid with m = 0.3 or to a pseudoplastic fluid
with m = 3. In these figures, the values y = 0.2 (Figs. 8
and 9) and y = 0.5 (Figs. 10 and 11) are considered.
Fig. 8, which refers to y = 0.2 and m = 0.3, shows that
flow reversal occurs for 4 =3 and 5 next to r =0.2,
while flow reversal occurs in the neighborhood of r =
1 for A = —10, for A = —20 and, although hardly per-
ceptible, for A = —5. These circumstances are compat-
ible with the threshold values A, and A, reported in
Table 3, namely A, =2.0998 and A, =4.7004. In
Fig. 9, the case y = 0.2 and m = 3 is considered. This
figure reveals a flow reversal next to the inner bound-
ary, for 4 =5. On the other hand, the scale of the
plots is not suitable to perceive the flow reversal occur-
ring next to r=1, for A =-20. Indeed, Table 3
implies that, in this case, the threshold values for the
onset of flow reversal are A,=3.1440 and A/ =
10.7995. In Fig. 10, as in Fig. 8, flow reversals exist for
A =3 and 5, as well as for 4 = -5, —10 and —20.
However, one of the most visible differences between
Figs. 8 and 10 is that Fig. 10, which refers to y = 0.5
and m = 0.3, displays a completely evident flow rever-
sal at A = —5. This conclusion agrees with the state-
ment that an increase of y implies an enhancement of
flow reversal at r = 1. In fact, on account of Table 3,
if m = 0.3 and y varies from 0.2 to 0.5, A’ undergoes a
change from 4.7004 to 3.0446. On the other hand,
Table 3 shows that, for m = 0.3, A, undergoes a slight
change in the range 0.2 <y < 0.5. In other words, as it
can be also inferred by comparing Figs. 8 and 10, the
phenomenon of flow reversal at the inner boundary is
not much different in the cases y = 0.2 and 0.5. The
comparison between Fig. 9, which refers to y =0.2
and m =3, and Fig. 11, which refers to y =0.5 and
m =13, leads to the following conclusions. When
y=0.5, the flow reversal at r=1 for A =-20 is
slightly enhanced; a flow reversal for 4 = —10 appears
which does not occur when y =0.2; flow reversal at
the inner boundary for A =35 is much less evident.
Hence, the increase of y from 0.2 to 0.5 implies an
enhanced flow reversal at the outer boundary and, in

the case m = 3, a definitely inhibited flow reversal at
the inner boundary.

7. Conclusions

Mixed convection of a power-law fluid in a vertical
annular duct has been investigated in a regime of lami-
nar and fully developed flow. Uniform and unequal
temperatures have been prescribed on the inner and
outer boundary walls. The local energy and momen-
tum balance equations as well as the stress—strain con-
stitutive relation have been written in a dimensionless
form.

It has been pointed out that the dimensionless sol-
ution is uniquely determined by the inverse of the
power-law index m, by the ratio y between the duct
inner and outer radii and by the ratio A between the
Grashof number Gr and the Reynolds number Re. The
dimensionless temperature has been shown to be the
same as in the case of pure conduction and to be inde-
pendent of m and of A. On the other hand, both the
dimensionless shear stress and the dimensionless vel-
ocity depend appreciably on m, y and A.

Analytical expressions which allow the determi-
nation of the dimensionless velocity and of the friction
factors have been obtained. The special cases of mixed
convection for Newtonian fluids and of forced convec-
tion for power-law fluids have been analyzed. In the
first special case, it has been shown that the conditions
for the onset of flow reversal imply the existence of
threshold values for |4|, which depend on y. When
these threshold values are exceeded, flow reversal
occurs either next to the inner boundary wall or next
to the outer boundary wall. In the second special case,
an analytical expression of the dimensionless velocity
distribution has been obtained and a comparison with
the results reported by Fredrickson and Bird [25] has
been performed, revealing a fair agreement.

In the general case of mixed convection for power-
law fluids, the flow reversal conditions have been inves-
tigated. As for Newtonian fluids, flow reversal occurs
when threshold values of |A| are exceeded. These
threshold values depend both on y and on m and, for
a fixed value of y, are increasing functions of m. As a
consequence, dilatant fluids need smaller values of |A]|
than pseudoplastic fluids in order to display flow rever-
sal. For a fixed m, the threshold value of |A]| for the
onset of flow reversal at the outer boundary is a mono-
tonic increasing function of y. On the other hand, the
threshold value of |A| for the onset of flow reversal at
the inner boundary depends non-monotonically on 7.
More precisely, for every m, there exists a value of y
such that this threshold value is minimum.
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Appendix A

The hypergeometric function is defined as

2Fi(a, by w; z) =

o) §~Ia+pro+))
L@Ib) & AT +))

The Euler gamma function is defined as

{o¢]

I'(z) = J Fle " dr.

0

The incomplete Euler beta function is defined as

B.(a, b) = JZ A1 = P e

0
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