
Combined forced and free ¯ow of a power-law ¯uid in a
vertical annular duct

A. Barletta

Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale (DIENCA), UniversitaÁ di Bologna, Viale Risorgimento

2, I-40136 Bologna, Italy

Received 8 October 1999

Abstract

An investigation of mixed convection and ¯ow reversal in a vertical annular duct is presented with reference to
laminar and fully-developed ¯ow of a power-law ¯uid. The boundary surfaces are supposed to be isothermal, with
unequal temperatures. The momentum balance and the energy balance equations as well as the viscous stress

constitutive equation are solved analytically in order to obtain the velocity ®eld, the viscous stress ®eld and the
temperature ®eld. First, two special cases are analyzed: mixed convection of a Newtonian ¯uid; forced convection of
a power-law ¯uid. Then, in the general case, the evaluation of the friction factors is employed to determine the

conditions for the occurrence of ¯ow reversal, for ®xed values of the power-law index and of the ratio between the
duct inner and outer radii. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many industrial applications involve paints, glues,

inks, soap as well as suspensions such as coal-water
slurries. As is well known, these ¯uids display a
behavior de®nitely di�erent from that of Newtonian

¯uids. Several papers dealing with the heat transfer
of non-Newtonian ¯uids in ducts have appeared in
the literature. Reviews of the most important results
obtained for internal ¯ow convection of non-

Newtonian ¯uids are available in the literature [1±
5]. Recently, some novel investigations on laminar
¯ow forced convection of non-Newtonian ¯uids in

ducts have been presented [6±15]. Gao and Hartnett

[6] are concerned with the fully developed forced
convection of power-law ¯uids in rectangular ducts.
Capobianchi and Irvine [7] provide a numerical

evaluation of the velocity and temperature pro®les
for the fully developed forced convection of a modi-
®ed power-law ¯uid in an annular duct. Prusa and
Manglik [8] describe a ®nite di�erence solution of

the classical Nusselt-Graetz problem in a circular
duct, with reference to a power-law ¯uid. The ®nite
element method is employed by Etemad and

Mujumdar [9] to obtain a solution for the simul-
taneously-developing laminar forced convection in a
semicircular duct for a power-law ¯uid with a tem-

perature-dependent consistency index. In Ref. [10],
an analysis of the boundary conditions which ensure
the existence of a thermally developed region in the

case of laminar forced convection with viscous dissi-
pation is performed, with reference to power-law
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¯uids in circular ducts. Min et al. [11,12] provide a

wide analysis of forced convection in a circular duct
for a Bingham plastic. In particular, in Refs.
[11,12], the fully developed and the thermally devel-

oping regimes are studied by employing analytical
methods, namely Frobenius method and separation
of variables, while the hydrodynamically developing

regime is analyzed by a numerical technique based
on the Crank±Nicolson scheme. Khellaf and Lauriat
[13] evaluate analytically both the bulk temperature

and the local Nusselt number for the thermally
developing forced convection either in a parallel-
plate channel or in a circular duct, with reference
to a power-law ¯uid and to a boundary condition

of uniform wall temperature. By employing a ®nite
integral transform technique, Lawal and Kalyon [14]
investigate forced convection ¯ow with viscous dissi-

pation for a Herschel±Bulkley ¯uid ¯owing between
two parallel plates in relative motion. Olek [15]
develops a general analytical method to obtain the

temperature ®eld in the thermal entrance region of

a circular or parallel-plate duct with convective

boundary conditions. Olek's solution holds for lami-
nar forced convection even if axial heat conduction
in the ¯uid cannot be neglected and can be

employed for an arbitrary fully developed velocity
pro®le, i.e. for an arbitrary Newtonian or non-New-
tonian ¯uid.

The e�ect of buoyancy forces in non-Newtonian
¯uid ¯ow has been investigated by Jones and Ing-
ham [16] and by Ingham and Jones [17]. In Refs.

[16,17], a study of the mixed convection ¯ow in the
entrance region of a vertical parallel-plate channel is
performed. Reference is made either to uniform wall
temperatures [16] or to linearly varying wall tem-

peratures [17]. In both cases, solutions for the
streamfunction, vorticity and temperature ®elds are
determined by employing a ®nite di�erence method.

Recently, an analytical solution for the velocity pro-
®les of a power-law ¯uid in the fully developed region
of a parallel-plate vertical channel has been obtained

in the case of mixed convection with asymmetric and

Nomenclature

a, b, w, z dummy complex variables
Bz�a,b� incomplete Euler beta function
C�m,g,L� root of Eq. (22)

D hydraulic diameter, D � 2R2�1ÿ g�
(m)

f1, f2 inner and outer friction factors

de®ned by Eq. (17)

2F1�a, b; w; z� hypergeometric function
g modulus of the gravitational accelera-

tion (m sÿ2)
Gr Grashof number de®ned by Eq. (9)
m inverse of the power-law index
p ¯uid pressure (Pa)

P di�erence between the pressure and
the hydrostatic pressure, P �
p� r0gX (Pa)

R radial coordinate (m)
r dimensionless radial coordinate

de®ned by Eq. (9)

R1, R2 inner and outer radii of the duct (m)
Re Reynolds number de®ned by Eq. (9)
T temperature (K)

T0 mean temperature in a duct section
(K)

T1, T2 inner and outer wall temperatures
(K)

U axial component of velocity (m sÿ1)
U0 reference velocity de®ned by Eq. (8)

(m sÿ1)

�U mean velocity in a duct section (m
sÿ1)

u dimensionless velocity de®ned by Eq.

(9)
umax maximum dimensionless velocity in a

duct section
�u mean dimensionless velocity in a duct

section
V radial component of velocity (m sÿ1)
X axial coordinate (m)
b thermal expansion coe�cient (Kÿ1)
g dimensionless parameter de®ned by

Eq. (9)

G�z� Euler gamma function
Z consistency factor (Pa s1/m)
y dimensionless temperature de®ned by

Eq. (9)
L dimensionless parameter de®ned by

Eq. (9)

Lr, L 0r threshold values of L for the onset of
¯ow reversal

r mass density (kg mÿ3)
r0 mass density at temperature T0 (kg

mÿ3)
s dimensionless shear stress de®ned by

Eq. (9)

t, tRX, tXR shear stresses (Pa)
o dimensionless parameter de®ned by

Eq. (9)
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uniform wall temperatures [18]. Moreover, in the same
paper, the conditions for the occurrence of ¯ow rever-

sal are determined both for upward ¯ow and for
downward ¯ow. Indeed, an extension of the analysis
performed in Ref. [18], to investigate mixed convection

¯ows in vertical annular ducts appears as interesting.
The subject of mixed convection in vertical annular

ducts has been studied by several authors [19±22]. The

papers by Sherwin [19], Rokerya and Iqbal [20], Mai-
tra and Sabba Raju [21] refer to Newtonian ¯uids and
to a uniform wall heat ¯ux prescribed either on the

inner wall [19±21] or on the outer wall [20]. On the
other hand, in the paper by Kou and Huang [22], a
non-Darcian ¯ow model is employed to investigate
mixed convection in a vertical annular duct ®lled with

a porous medium.
The aim of the present paper is to extend the math-

ematical model considered in Ref. [18], as well as the

analytical method employed to solve the governing
equations, in order to analyze the combined forced
and free ¯ow of a power-law ¯uid in a vertical annular

duct. The analysis will be performed under the hypoth-
esis of laminar and fully developed ¯ow. Moreover,
the duct walls will be supposed to be isothermal, with

di�erent temperatures. In the following sections, it will
be pointed out that, both for Newtonian and non-
Newtonian ¯uids, the value of the pressure gradient
which is required to produce a given mass ¯ow rate is

in¯uenced by the buoyancy e�ect. On the other hand,
in Ref. [18] it is shown that, in the case of a vertical
parallel-plate channel, this feature occurs only for non-

Newtonian ¯uids, while Newtonian ¯uids display the
same relation between pressure gradient and mass ¯ow

rate both for forced convection and for mixed convec-
tion.

2. Formulation of the problem

In this section, the heat transfer problem is described
and the set of governing equations is expressed in a
dimensionless form.
Let us consider the vertical annular duct shown in

Fig. 1. The thermal boundary conditions are such that
the internal wall is isothermal with a temperature T1,
while the external wall is isothermal with a tempera-

ture T2 6�T1: Viscous dissipation is neglected and the
¯ow is assumed to be steady, laminar and fully devel-
oped. The Boussinesq approximation and the mass

balance equation imply that the velocity ®eld is sole-
noidal, while the condition of fully developed ¯ow
implies that @U=@X � 0: Therefore, one can conclude
that U depends only on R and that V is zero. More-

over, it can be inferred that the only nonvanishing
component of the viscous stress tensor is t � tRX �
tXR: The latter is assumed to be expressed by the Ost-

wald±De Waele constitutive equation, namely

t � Z

����dUdR

�����1ÿm�=m dU

dR
: �1�

Eq. (1) implies that the case m < 1 corresponds to dila-

tant ¯uid behavior, while the case m > 1 corresponds
to pseudoplastic ¯uid behavior.
The buoyancy e�ect is accounted for by employing

the equation of state

r � r0
�
1ÿ b�Tÿ T0 �

�
, �2�

where r0 and b are assumed to be constant and T0 is
chosen as the mean temperature in a duct section, i.e.

T0 � 2

R 2
2 ÿ R 2

1

�R2

R1

TR dR: �3�

The choice of the reference temperature expressed by

Eq. (3) ensures the best conditions for the validity of
the Boussinesq approximation [23]. Let us assume that
the thermal conductivity of the ¯uid and the consist-
ency factor Z are independent of temperature. Since Z
is a constant, Eq. (1) implies that t depends only on R.
The momentum balance in the radial direction yields
@P=@R � 0, while the momentum balance in the X-

direction can be expressed as

gbr0�Tÿ T0 � ÿ dP

dX
� 1

R

d

dR
�Rt� � 0: �4�

If both sides of Eq. (4) are derived with respect to X,
multiplied by R and then integrated with respect to RFig. 1. Drawing of the system.
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in the interval R1RRRR2, on account of Eq. (3), one
can conclude that

d 2P

dX 2
� 0,

@T

@X
� dT0

dX
: �5�

Eq. (5) implies that dP=dX is a constant. Moreover,

since @T=@X is zero at the boundary walls and since
Eq. (5) ensures that @T=@X does not depend on R, one
can conclude that T is independent of X. Therefore,

the energy balance equation yields

d

dR

�
R

dT

dR

�
� 0: �6�

It can be easily proved that Eq. (1) can be rewritten as

dU

dR
� t

Z

� jtj
Z

�mÿ1
: �7�

If one chooses the reference velocity

U0 � ÿ
�
2

Z

�m

Dm�1
����dPdX

����mÿ1 dP

dX
�8�

and de®nes the dimensionless quantities

Re � r0U0jU0j�mÿ1�=mD1=m

Z
,

Gr � gbr 2
0 �T2 ÿ T1 �jU0j 2�mÿ1�=mD�m�2�=m

Z 2
,

y � Tÿ T0

T2 ÿ T1
,

r � R

R2
, g � R1

R2
, u � U

U0
, o � T0 ÿ T1

T2 ÿ T1
,

s � 2Ret
r0U

2
0

, L � Gr

Re
,

�9�

the governing Eqs. (4), (6) and (7) can be rewritten as

2�1ÿ g� d

dr
�rs� � ÿr�2Ly� 1�, �10�

d

dr

�
r
dy
dr

�
� 0, �11�

du

dr
� sjsjmÿ1

2m�1�1ÿ g� : �12�

Eqs. (8) and (9) allow one to conclude that a downward

gradient ¯ow �dP=dx < 0� corresponds to U0 > 0 and
Re > 0, while an upward gradient ¯ow �dP=dx > 0� cor-
responds to U0 < 0, Re < 0: Then, for downward gra-

dient ¯ow, the parameter L is positive if T2 > T1,
while it is negative if T2 < T1: Obviously, the opposite

occurs in the case of upward gradient ¯ow.
It is easily veri®ed that the dimensionless ®elds are

subjected to the boundary conditions

u�g� � u�1� � 0, y�g� � ÿo, y�1� � 1ÿ o: �13�

Moreover, Eq. (2) implies that the dimensionless tem-
perature y must ful®l the constraints

�1
g
y�r�r dr � 0: �14�

If the ratio g � R1=R2, the inverse of the power-law
index m and the parameters

L � Gr

Re
� gbD�T2 ÿ T1 �

U 2
0

Re �15�

are prescribed, the solution of Eqs. (10)±(14) allows
one to obtain u�r�, y�r�, s�r� and the parameter o: Let
us de®ne the dimensionless parameter �u as

�u �
�U

U0
� 2

1ÿ g 2

�1
g
u�r�r dr: �16�

Obviously, the ratio �u between the mean velocity in a
channel section �U and the reference velocity U0, may

depend not only on m and g, but also on L: In other
words, the mass ¯ow rate which occurs for a given
value of the vertical pressure gradient may be in¯u-

enced by the buoyancy e�ect.
The Fanning friction factors are de®ned as

f1 � 2
t�R1 �
r0U

2
0

� s�g�
Re

, f2 � ÿ2 t�R2 �
r0U

2
0

� ÿs�1�
Re

: �17�

As a consequence of Eqs. (14) and (17), if one inte-
grates both sides of Eq. (10) with respect to r in the

interval �g, 1], one is led to a relation between the fric-
tion factors, namely

f2 � 1� g
4Re

ÿ gf1: �18�

Moreover, as a consequence of the no-slip conditions

expressed in Eq. (13), an integration of both sides of
Eq. (12) with respect to r in the interval �g, 1] yields a
constraint on s�r�, namely�1
g
s�r�js�r�jmÿ1 dr � 0: �19�
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3. Evaluation of the velocity and stress ®elds

In this section, the dimensionless temperature, shear
stress and velocity are determined by solving analyti-
cally Eqs. (10)±(14). Moreover, the special cases of

mixed convection for Newtonian ¯uids and of forced
convection are discussed.
One can easily integrate Eq. (11), so that Eqs. (14)

and (16) allow one to obtain the dimensionless tem-

perature distribution and the parameter o,

y�r� � ÿ ln�r�
ln�g� ÿ

g 2

1ÿ g 2
ÿ 1

2 ln�g� ,

o � 1

1ÿ g 2
� 1

2 ln�g� :
�20�

Then, Eqs. (10) and (20) allow one to obtain an ex-
pression of s�r�, namely

s�r� � 2C�m, g, L� ÿ r 2

4r�1ÿ g� � Lr
2�1ÿ g�

 
ln�r�
ln�g� �

g 2

1ÿ g 2

!
,

�21�
where C�m, g, L� is an integration constant. For given

values of the parameters m, g and L, the value of this
constant can be determined by solving Eq. (19). More
precisely, if one substitutes Eq. (21) in Eq. (19), then
one obtains C(m, g, L� as the solution of the equation

�1
g

"
2Cÿ r 2 � 2Lr 2

 
ln�r�
ln�g� �

g 2

1ÿ g 2

!#������2Cÿ r 2

� 2Lr 2
 

ln�r�
ln�g� �

g 2

1ÿ g 2

!������
mÿ1

dr

rm
� 0: �22�

After having determined s�r� by employing Eqs. (21)

and (22), the dimensionless velocity distribution is
obtained as the solution of Eq. (12) which ful®ls the
no-slip conditions expressed by Eq. (13), namely

u�r� � 1

2m�1�1ÿ g�
�r
g
s�r 0 �js�r 0 �jmÿ1 dr 0: �23�

On account of Eqs. (17) and (21), the friction factors

f1 and f2 can be expressed as

f1Re � 2C�m, g, L� ÿ g 2

4g�1ÿ g� � Lg

2�1ÿ g� 2�1� g� ,

f2Re � 1ÿ 2C�m, g, L�
4�1ÿ g� ÿ Lg 2

2�1ÿ g� 2�1� g� : �24�

The solution of Eq. (22) can be easily determined for
m � 1: In fact, for Newtonian ¯uids, one obtains

C�1, g, L� � ÿ1ÿ g 2

4 ln�g�
�
1� L

ln�g�
�
: �25�

In the special case m � 1, Eqs. (21), (23) and (25) yield
the dimensionless velocity pro®le

u�r� �
�1ÿ r 2 �ln�g� ÿ

ÿ
1ÿ g 2

�
ln�r�

32�1ÿ g� 2ln�g�
ÿ L

ÿ
1ÿ g 2

��
1ÿ g 2 ÿ 2r 2ln�g�

�
ln�r� ÿ �1ÿ r 2 ��1ÿ g 2 ÿ 2g 2ln�g�

�
ln�g�

32�1ÿ g�3�1� g��ln�g�� 2 : �26�

On account of Eqs. (16) and (26), the mean dimension-
less velocity in a channel section is expressed as

�u � 1ÿ g 2 �
ÿ
1� g 2

�
ln�g�

64�1ÿ g� 2ln�g�

� L
2
ÿ
1ÿ g 2

� 2�ÿ1ÿ g4
�
ln�g� ÿ 4g 2

�
ln�g�� 2

128�1ÿ g�3�1� g��ln�g�� 2 : �27�

Eq. (27) reveals that, for a Newtonian ¯uid, the par-
ameter �u depends on L: However, in the limit g41,

this parameter becomes independent of L and is equal
to 1/96. This result is in agreement with the analysis
presented in Ref. [18] with reference to a parallel plate
channel. Indeed, if g41, the ¯ow in an annular duct

becomes coincident with that in a parallel plate chan-
nel.
On account of Eqs. (24) and (25), in the special case

m � 1, the friction factors can be expressed as

f1Re � ÿ g
4�1ÿ g� ÿ

1� g
8g ln�g�

� L

"
g

2�1ÿ g� 2�1� g� ÿ
1� g

8g ln�g� 2
#
,
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f2Re � 1

4�1ÿ g� �
1� g
8 ln�g�

ÿ L

"
g 2

2�1ÿ g� 2�1� g� ÿ
1� g

8 ln�g� 2
#
: �28�

Another special case is obtained in the limit L40: In
this limit, the buoyancy e�ect becomes negligible and a
pure forced convection regime occurs. By employing

Eq. (21) with L40, the integral on the right-hand side
of Eq. (23) can be evaluated analytically, so that one
obtains

u�r� � C�m, g, 0�m
21�2m�1ÿm��1ÿ g�1�m

�
"
r1ÿm2F1

 
1ÿm

2
, ÿm;

3ÿm

2
;

r 2

2C�m, g, 0�

!

ÿ g1ÿm2F1

 
1ÿm

2
, ÿm;

3ÿm

2
;

g 2

2C�m, g, 0�

!#
,

if C�m, g, 0� > r 2

2
;

u�r� � C�m, g, 0��1�m�=2

25�1�m�=2�1ÿ g�1�mG
�
3�m

2

�

�
�
2G

�
1ÿm

2

�
G�1�m�

ÿ G

�
ÿ 1�m

2

�
G�2�m�

� 2B2C�m, g, 0�=r 2
�
ÿ 1�m

2
, 1�m

�
G

�
3�m

2

�

ÿ 2Bg 2=�2C�m, g, 0��
�
1ÿm

2
, 1�m

�
G

�
3�m

2

��
,

if
g 2

2
RC�m, g, 0�Rr 2

2
;

u�r� � 1

22�3m�1�m��1ÿ g�1�m

�
8<:
"
g 2 ÿ 2C�m, g, 0������������������������

2C�m, g, 0�p #1�m

2F1

 
1�m,

1�m

2
;

2�m; 1ÿ g 2

2C�m, g, 0�

!

ÿ
"
r 2 ÿ 2C�m, g, 0������������������������

2C�m, g, 0�p #1�m

2F1

 
1�m,

1�m

2
;

2�m; 1ÿ r 2

2C�m, g, 0�

!35, if C�m, g, 0� < g 2

2
:

�29�

In Eq. (29), 2F1�a, b; w; z� denotes the hypergeometric
function, G�z� the Euler gamma function and Bz�a, b�
the incomplete Euler beta function. The de®nitions of
these special functions are recalled in the Appendix A,

while their most important properties are treated in

Fig. 2. Plots of �u vs. g in the case m � 1:
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mathematical handbooks such as Gradshteyn and
Rhyzik [24]. It must be pointed out that an analysis of

the laminar and fully developed velocity pro®le for iso-
thermal ¯ow of power-law ¯uids in annular ducts was
performed by Fredrickson and Bird [25]. However,

although these authors presented their solution in the
form of an integral similar to the one reported in Eq.
(23), they did not show that an expression in terms of

well known special functions could be obtained.

4. A special case: mixed convection of a Newtonian ¯uid

In this section, the special case of mixed convection
for Newtonian ¯uids, i.e. the case m � 1, is analyzed.

This analysis is performed by employing Eqs. (25)±
(28).
In Figs. 2±4, the behavior of the dimensionless par-

ameters �u, f1Re and f2Re as functions of g is rep-
resented, for ®xed values of L: In particular, in the
limit g40, the mean dimensionless velocity �u tends to
1/64, for any value of L: As g increases, Fig. 2 shows

that, for positive values of L, �u reaches a minimum
and then increases towards the value for g41, i.e.
1/96. On the other hand, the plots of �u vs. g for L <
ÿ2 display the presence of a maximum for very small
values of g: By employing Eq. (27), it is easily shown
that, in the limit g41, the derivative of �u with respect

to g is equal to L=1440: Moreover, in the limit g40,

the derivative of �u with respect to g tends to �1 for
L < ÿ2 and to ÿ1 for L > ÿ2: As a consequence, a

value of g which corresponds to a minimum of the
mean dimensionless velocity exists for every positive

value of L, while a value of g which corresponds to a
maximum of �u exists for every L < ÿ2:
Fig. 2 clearly shows that, for a given g, the dimen-

sionless parameter �u is a decreasing function of L: In
other words, for a given axial pressure gradient, buoy-

ancy tends to increase the modulus of the mean ¯uid

velocity, either for upward gradient ¯ow with T2 > T1

or for downward gradient ¯ow with T2 < T1: On the

contrary, the modulus of the mean velocity is reduced
by the buoyancy e�ect either in the case of downward

gradient ¯ow with T2 > T1 or in the case of upward
gradient ¯ow with T2 < T1:
Figs. 3 and 4 display the behavior of the friction fac-

tors as functions of g both for positive and for negative
values of L: On account of Eq. (28), it is easily shown

that, in the limit g40 and for every ®xed value of L,
the parameter f1Re tends to �1 and the parameter
f2Re tends to 1/4. For any given LR1, f1Re is a

strictly decreasing function of g: On the other hand, if
L > 1, the parameter f1Re is a non-monotonic function

of g and displays a minimum for a value of g which is
smaller and smaller as L increases. This behavior is

quite evident in Fig. 3, although in the case L � 10 the

range of the frame is not suitable to represent the
minimum reached by f1Re: By employing Eq. (28), it is

Fig. 4. Plots of f2Re vs. g in the case m � 1:

Fig. 3. Plots of f1Re vs. g in the case m � 1:
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easily shown that the parameter f2Re, considered as a

function of g for a ®xed L, is strictly decreasing if

LRÿ 1, while it displays the occurrence of a minimum

for any L > ÿ1: As is shown in Fig. 4, this minimum

can correspond to very small values of g, as in the

cases L � 2, 5 and 10. In these cases, if one excludes a

very narrow boundary of g � 0, f2Re appears as a

monotonic increasing function of g: Fig. 3 shows that,

both for L � 5 and for L � 10, f1Re becomes negative

even for small values of g: On the other hand, in Fig. 4,
negative values of f2Re are displayed for L � ÿ5 and

for L � ÿ10: As it can be easily veri®ed by employing
Eqs. (1) and (17), if f1Re becomes negative, a ¯ow
reversal occurs next to the boundary R � R1: More-

over, if f2Re becomes negative, a ¯ow reversal occurs
next to the boundary R � R2: As is well known, ¯ow
reversal occurs when there exists a region next to one
of the boundary walls where the quantity u= �u is nega-

tive. Indeed, one can readily show that the onset of
¯ow reversal at a given boundary wall is accompanied
by a sign change of both the shear stress and the Fan-

ning friction factor at that boundary wall. An illus-
tration of the regions in the plane �g, L� which
correspond to ¯ow reversal either at the inner or at the

outer boundary is reported in Fig. 5. The conditions
for ¯ow reversal are easily deduced by means of Eq.
(28) and are as follows. For positive L, ¯ow reversal

occurs at the inner boundary whenever

L >

ÿ
1ÿ g 2

��
g 2 ÿ 1ÿ 2g 2ln�g�

�
ln�g�ÿ

1ÿ g 2
� 2ÿ4g 2�ln�g�� 2 : �30�

By employing inequality (30) as well as its graphical
representation in Fig. 5(a), it is easily veri®ed that the
smallest threshold value of L which may yield a ¯ow

reversal at the inner surface is L � 2:480 and corre-
sponds to g � 0:3083: For negative L, the condition

Fig. 5. Drawing of the regions of ¯ow reversal in the plane �g,
L� for the case m � 1: Frame (a) refers to ¯ow reversal at the

inner boundary. Frame (b) refers to ¯ow reversal at the outer

boundary.

Fig. 6. Plots of u= �u vs. r for g � 0:5 in the case m � 1:
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for ¯ow reversal at the outer boundary is

jLj >
ÿ
1ÿ g 2

��
1ÿ g 2 � 2 ln�g�

�
ln�g�ÿ

1ÿ g 2
� 2ÿ4g 2�ln�g�� 2 : �31�

In this case, on account of inequality (31) and of
Fig. 5(b), the smallest threshold value of jLj is jLj � 3
and corresponds to the limit g41, i.e. to the limit of a

parallel-plate channel.
In Fig. 6, plots of the dimensionless velocity pro®les

are reported for g � 0:5 and for some positive or nega-

tive values of the parameter L: This ®gure shows that,
both for L � 5 and for L � 10, the ¯ow reversal
phenomena displayed at r � 0:5 are more pronounced
than those displayed at r � 1 for L � ÿ5 and for L �
ÿ10: On the other hand, no ¯ow reversal occurs for
L � 2 and for L � ÿ2: Moreover, these plots show
that, at the position r � 0:7584, the ratio u= �u is unaf-

fected by the value of L: Indeed, on account of Eqs.
(26) and (27), it can be easily checked that a position r

such that the ratio u= �u is independent of L exists for
every value of g: Fig. 6 clearly shows that, if L is posi-
tive, buoyancy increases the dimensionless velocity u= �u

next to r � 1 and decreases u= �u next to r � 0:5:
Obviously, the reverse occurs for negative values of L:
This result is quite reasonable, since a positive value of

L corresponds either to a downward gradient ¯ow
such that r � 1 is the hot surface or to an upward gra-
dient ¯ow such that r � 1 is the cold surface.

5. A special case: forced convection of a power-law ¯uid

In this section, the special case of forced convection

for power-law ¯uids, i.e. the case m 6�1 and L � 0, is
analyzed. The analysis is performed by employing Eqs.
(22), (24) and (29). More precisely, Eq. (22) is solved

Table 1

Values of the parameters f1Re, f2Re and �u, in the case L � 0

m g f1Re f2Re �u� 10 m g f1Re f2Re �u� 10

0.3 0.01 5.047 0.2020 0.6116 0.5 0.01 4.246 0.2100 0.3855

0.1 0.7166 0.2033 0.5948 0.1 0.6652 0.2085 0.3664

0.2 0.4619 0.2076 0.5892 0.2 0.4417 0.2117 0.3605

0.3 0.3749 0.2125 0.5864 0.3 0.3638 0.2159 0.3576

0.4 0.3308 0.2177 0.5848 0.4 0.3239 0.2204 0.3559

0.5 0.3041 0.2230 0.5838 0.5 0.2996 0.2252 0.3549

0.6 0.2861 0.2283 0.5832 0.6 0.2832 0.2301 0.3543

0.7 0.2733 0.2337 0.5828 0.7 0.2714 0.2350 0.3539

0.8 0.2636 0.2391 0.5826 0.8 0.2625 0.2400 0.3537

0.9 0.2560 0.2446 0.5825 0.9 0.2556 0.2450 0.3536

1 1/4 1/4 0.5825 1 1/4 1/4 0.3536

0.7 0.01 3.558 0.2169 0.2448 1.5 0.01 1.852 0.2340 4.088� 10ÿ2

0.1 0.6220 0.2128 0.2271 0.1 0.5052 0.2245 3.501� 10ÿ2

0.2 0.4246 0.2151 0.2219 0.2 0.3772 0.2246 3.340� 10ÿ2

0.3 0.3544 0.2187 0.2195 0.3 0.3280 0.2266 3.263� 10ÿ2

0.4 0.3181 0.2228 0.2180 0.4 0.3015 0.2294 3.219� 10ÿ2

0.5 0.2958 0.2271 0.2172 0.5 0.2849 0.2325 3.193� 10ÿ2

0.6 0.2807 0.2316 0.2166 0.6 0.2735 0.2359 3.177� 10ÿ2

0.7 0.2698 0.2362 0.2163 0.7 0.2652 0.2393 3.166� 10ÿ2

0.8 0.2616 0.2408 0.2161 0.8 0.2589 0.2429 3.161� 10ÿ2

0.9 0.2551 0.2454 0.2160 0.9 0.2540 0.2464 3.158� 10ÿ2

1 1/4 1/4 0.2160 1 1/4 1/4 3.157� 10ÿ2

2.0 0.01 1.353 0.2390 1.340� 10ÿ2 3.5 0.01 0.7610 0.2449 4.761� 10ÿ4

0.1 0.4606 0.2289 1.113� 10ÿ2 0.1 0.3854 0.2365 3.799� 10ÿ4

0.2 0.3582 0.2284 1.049� 10ÿ2 0.2 0.3240 0.2352 3.493� 10ÿ4

0.3 0.3172 0.2298 1.019� 10ÿ2 0.3 0.2972 0.2358 3.345� 10ÿ4

0.4 0.2947 0.2321 1.001� 10ÿ2 0.4 0.2819 0.2373 3.261� 10ÿ4

0.5 0.2804 0.2348 9.910� 10ÿ3 0.5 0.2719 0.2391 3.210� 10ÿ4

0.6 0.2705 0.2377 9.845� 10ÿ3 0.6 0.2648 0.2411 3.178� 10ÿ4

0.7 0.2633 0.2407 9.804� 10ÿ3 0.7 0.2596 0.2433 3.158� 10ÿ4

0.8 0.2578 0.2438 9.781� 10ÿ3 0.8 0.2557 0.2455 3.146� 10ÿ4

0.9 0.2535 0.2469 9.769� 10ÿ3 0.9 0.2525 0.2477 3.140� 10ÿ4

1 1/4 1/4 9.766� 10ÿ3 1 1/4 1/4 3.139� 10ÿ4
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numerically to determine C�m, g, 0�: Then, the friction

factors and the dimensionless velocity are evaluated by
employing Eqs. (24) and (29).

In Table 1, the values of f1Re, f2Re and �u are
reported for some values of m and of g: In particular,

the values of these parameters in the case g41 are
obtained by employing the results for the parallel-plate

channel reported in Ref. [18]. This table reveals that,
both for dilatant and for pseudoplastic ¯uids, the fric-
tion factor f1Re is a decreasing function of g, while

f2Re is a non-monotonic function of g which presents
a minimum, as in the case m � 1 discussed in the pre-

ceding section. The behavior of f1Re is easily veri®ed
by considering Fig. 7. In fact, one can check that, as

g decreases, the dimensionless velocity undergoes a
steeper radial change in the neighborhood of r � g:
Another relevant feature of the data reported in
Table 1 is the following. For a given g, the friction fac-

tor f1Re decreases with m, while the other friction fac-
tor f2Re increases with m. Finally, Table 1 reveals that

both the change of f1Re with m at ®xed g and the
change of f1Re with g at ®xed m are more relevant
than the corresponding changes of f2Re, especially for

small values of g:
In Table 2, a comparison between the analytical ex-

pression of the velocity pro®le given by Eq. (29) and
the solution found by Fredrickson and Bird [25] is

Fig. 7. Plots of u= �u vs. r for g � 0:2 and g � 0:5 in the case

L � 0:

Table 2

Comparison between the values of umax= �u obtained by employing Eq. (29) and those reported in Ref. [25]

m g umax= �u (present paper) umax= �u (Ref. [25]) m g umax= �u (present paper) umax= �u (Ref. [25])

0.25 0.01 1.84502 1.869 0.5 0.01 1.75613 1.778

0.1 1.82375 1.803 0.1 1.70918 1.714

0.2 1.81391 1.815 0.2 1.69093 1.693

0.3 1.80846 1.810 0.3 1.68126 1.682

0.4 1.80513 1.806 0.4 1.67547 1.676

0.5 1.80302 1.803 0.5 1.67183 1.672

0.6 1.80167 1.802 0.6 1.66951 1.670

0.7 1.80082 1.802 0.7 1.66807 1.669

0.8 1.80032 1.800 0.8 1.66722 1.668

0.9 1.80007 1.800 0.9 1.66679 1.667

1 1.80000 ± 1 1.66667 ±

2.0 0.01 1.53972 1.540 4.0 0.01 1.36558 1.365

0.1 1.41859 1.419 0.1 1.28018 1.280

0.2 1.38041 1.380 0.2 1.24569 1.246

0.3 1.36124 1.361 0.3 1.22744 1.227

0.4 1.35003 1.350 0.4 1.21653 1.217

0.5 1.34308 1.344 0.5 1.20969 1.212

0.6 1.33869 1.340 0.6 1.20534 1.208

0.7 1.33596 1.337 0.7 1.20263 1.205

0.8 1.33437 1.336 0.8 1.20103 1.203

0.9 1.33356 1.334 0.9 1.20023 1.201

1 1.33333 ± 1 1.20000 ±
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reported. In this table, the values of the ratio umax= �u
for m � 0:25, 0.5, 2 and 4, computed by employing

Eq. (29), are compared with the corresponding values
given in Ref. [25]. The value of umax is easily obtained
since, as one can readily infer by employing Eq. (12),

when u is maximum s vanishes. Indeed, if L � 0, Eq.
(21) ensures that the radius r which corresponds to u �
umax is equal to

�����������������������
2C�m, g, 0�p

: Table 2 reveals that a

very good agreement exists with the results obtained in
Ref. [25], the relative error being in any case less than
1.3%. The data for g41 reported in Table 2 refer to

the solution in the case of a parallel-plate channel dis-
cussed in Ref. [18].
In Fig. 7, plots of u= �u vs. r are supplied for m � 0:3,

1 and 3, with reference to g � 0:2 and 0.5. This ®gure

shows that the plots for g � 0:5 have only a slight
asymmetry with respect to the mid position
r � �1� g�=2 � 0:75, which is less evident in the case

of dilatant behavior �m � 0:3� than in the case of
pseudoplastic behavior �m � 3). On the other hand,

the plots for g � 0:2 are de®nitely asymmetric with
respect to the position r � �1� g�=2 � 0:6: Indeed, for
g � 0:5, the position of the maximum dimensionless
velocity is r � 0:74436 if m � 0:3, r � 0:73553 if m � 1,
r � 0:72397 if m � 3: For g � 0:2, the maximum

dimensionless velocity occurs at r � 0:57934 if m � 0:3,
r � 0:54611 if m � 1, r � 0:50299 if m � 3:

6. Mixed convection of a power-law ¯uid

In this section, the general case of mixed convection
for power-law ¯uids is investigated. The analysis is per-
formed by employing Eqs. (21)±(23). Eq. (22) is solved
numerically to determine C�m, g, L�: Then, the dimen-

sionless velocity is evaluated by employing Eqs. (21)
and (23).
It is easily veri®ed that, for every choice of m and g,

there exist two positive real numbers Lr and L 0r such
that ¯ow reversal at r � g occurs if and only if L > Lr,
while ¯ow reversal at r � 1 occurs if and only if L <
ÿL 0r: In other words, for any given choice of m and g,
the dimensionless shear stress at the inner boundary
s�g�, i.e. the quantity f1Re, is positive if L < Lr and

negative if L > Lr: Moreover, for any given choice of
m and g, the dimensionless shear stress at the outer
boundary s(1), i.e. the quantity ÿf2Re, is negative if
L > ÿL 0r and positive if L < ÿL 0r: The values of Lr

Fig. 8. Plots of u= �u vs. r for g � 0:2 in the case m � 0:3:

Table 3

Values of Lr and L 0r for di�erent values of m and g

g m Lr L 0r g m Lr L 0r

0.2 0.3 2.0998 4.7004 0.5 0.3 2.0795 3.0446

0.4 2.1760 5.0401 0.4 2.1630 3.2093

0.5 2.2465 5.3716 0.5 2.2404 3.3652

0.6 2.3118 5.6940 0.6 2.3123 3.5130

0.7 2.3725 6.0064 0.7 2.3794 3.6531

0.8 2.4293 6.3086 0.8 2.4421 3.7859

0.9 2.4825 6.6003 0.9 2.5009 3.9119

1.0 2.5324 6.8817 1.0 2.5562 4.0316

1.5 2.7431 8.1414 1.5 2.7896 4.5493

2.0 2.9061 9.1865 2.0 2.9704 4.9613

2.5 3.0367 10.0604 2.5 3.1152 5.2969

3.0 3.1440 10.7995 3.0 3.2341 5.5757

3.5 3.2341 11.4318 3.5 3.3338 5.8112

4.0 3.3110 11.9786 4.0 3.4188 6.0129

4.5 3.3775 12.4561 4.5 3.4922 6.1878

5.0 3.4356 12.8768 5.0 3.5563 6.3410

0.7 0.3 2.1824 2.6643 0.95 0.3 2.3403 2.4089

0.4 2.2749 2.7958 0.4 2.4455 2.5195

0.5 2.3608 2.9195 0.5 2.5437 2.6230

0.6 2.4410 3.0359 0.6 2.6355 2.7199

0.7 2.5159 3.1456 0.7 2.7216 2.8108

0.8 2.5861 3.2491 0.8 2.8024 2.8963

0.9 2.6520 3.3469 0.9 2.8785 2.9769

1.0 2.7140 3.4395 1.0 2.9503 3.0529

1.5 2.9768 3.8363 1.5 3.2555 3.3768

2.0 3.1810 4.1489 2.0 3.4939 3.6302

2.5 3.3449 4.4020 2.5 3.6856 3.8344

3.0 3.4796 4.6113 3.0 3.8437 4.0028

3.5 3.5927 4.7876 3.5 3.9764 4.1443

4.0 3.6891 4.9382 4.0 4.0897 4.2651

4.5 3.7724 5.0686 4.5 4.1876 4.3696

5.0 3.8451 5.1828 5.0 4.2732 4.4609
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and L 0r are di�erent and, for every m, tend to be equal
in the limit g41: In fact, in this limit, one yields the

parallel-plate channel ¯ow which, as is discussed in
Ref. [18], is endowed with a special symmetry linking
the upward gradient case �Re < 0� and the downward

gradient case �Re > 0). Values of Lr and L 0r for given
m and g can be evaluated by employing Eqs. (21), (22)
and are reported in Table 3. This table shows that the

di�erence between the values of Lr and L 0r is specially
pronounced for pseudoplastic ¯uids at low values of
g: In any case, this di�erence becomes smaller and

smaller as g increases. A comparison between the
values of Lr � L 0r, reported in Ref. [18], for a parallel-
plate channel, i.e. for the limit g41, and the values of
Lr and L 0r reported in Table 3 for g � 0:95 reveals a

fair agreement. More precisely, for each m, the value
of Lr for g � 0:95 is slightly lower than that for g41,
while the value of L 0r for g � 0:95 is slightly higher

than that for g41: For a given m, the change of L 0r
with g is much more sharp than that of Lr: It is easily
veri®ed that, for a ®xed m, while L 0r is a monotonic

decreasing function of g, Lr is a non-monotonic func-
tion of g: In fact, for a given value of m, the qualitat-
ive behavior of Lr as a function of g is the same as

that outlined in the preceding sections with reference
to Newtonian ¯uids and illustrated in Fig. 5(a). More
precisely, for a ®xed value of m, it can be shown that
Lr decreases for small g, reaches a minimum and then

increases.

Fig. 10. Plots of u= �u vs. r for g � 0:5 in the case m � 0:3:

Fig. 11. Plots of u= �u vs. r for g � 0:5 in the case m � 3:Fig. 9. Plots of u= �u vs. r for g � 0:2 in the case m � 3:
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An analysis of Table 3 allows one to conclude that

the onset of a ¯ow reversal at r � 1 requires an higher

wall temperature di�erence than the onset of a ¯ow

reversal at r � g: Moreover, the smaller is the value of

g, the higher is the value of jLj which yields a ¯ow

reversal at r � 1: Finally, it should be pointed out

that, for every g, both Lr and L 0r are increasing func-

tions of m. As a consequence, dilatant ¯uids need

smaller values of jLj than pseudoplastic ¯uids in order

to display ¯ow reversal. This feature was already

pointed out with reference to parallel-plate channels

[18].

Figs. 8±11 display the dimensionless velocity u�r�= �u

for di�erent values of L, with reference either to a

dilatant ¯uid with m � 0:3 or to a pseudoplastic ¯uid

with m � 3: In these ®gures, the values g � 0:2 (Figs. 8

and 9) and g � 0:5 (Figs. 10 and 11) are considered.

Fig. 8, which refers to g � 0:2 and m � 0:3, shows that
¯ow reversal occurs for L � 3 and 5 next to r � 0:2,
while ¯ow reversal occurs in the neighborhood of r �
1 for L � ÿ10, for L � ÿ20 and, although hardly per-

ceptible, for L � ÿ5: These circumstances are compat-

ible with the threshold values Lr and L 0r reported in

Table 3, namely Lr � 2:0998 and L 0r � 4:7004: In

Fig. 9, the case g � 0:2 and m � 3 is considered. This

®gure reveals a ¯ow reversal next to the inner bound-

ary, for L � 5: On the other hand, the scale of the

plots is not suitable to perceive the ¯ow reversal occur-

ring next to r � 1, for L � ÿ20: Indeed, Table 3

implies that, in this case, the threshold values for the

onset of ¯ow reversal are Lr � 3:1440 and L 0r �
10:7995: In Fig. 10, as in Fig. 8, ¯ow reversals exist for

L � 3 and 5, as well as for L � ÿ5, ÿ10 and ÿ20.
However, one of the most visible di�erences between

Figs. 8 and 10 is that Fig. 10, which refers to g � 0:5
and m � 0:3, displays a completely evident ¯ow rever-

sal at L � ÿ5: This conclusion agrees with the state-

ment that an increase of g implies an enhancement of

¯ow reversal at r � 1: In fact, on account of Table 3,

if m � 0:3 and g varies from 0.2 to 0.5, L 0r undergoes a
change from 4.7004 to 3.0446. On the other hand,

Table 3 shows that, for m � 0:3, Lr undergoes a slight

change in the range 0:2 < g < 0:5: In other words, as it

can be also inferred by comparing Figs. 8 and 10, the

phenomenon of ¯ow reversal at the inner boundary is

not much di�erent in the cases g � 0:2 and 0.5. The

comparison between Fig. 9, which refers to g � 0:2
and m � 3, and Fig. 11, which refers to g � 0:5 and

m � 3, leads to the following conclusions. When

g � 0:5, the ¯ow reversal at r � 1 for L � ÿ20 is

slightly enhanced; a ¯ow reversal for L � ÿ10 appears

which does not occur when g � 0:2; ¯ow reversal at

the inner boundary for L � 5 is much less evident.

Hence, the increase of g from 0.2 to 0.5 implies an

enhanced ¯ow reversal at the outer boundary and, in

the case m � 3, a de®nitely inhibited ¯ow reversal at
the inner boundary.

7. Conclusions

Mixed convection of a power-law ¯uid in a vertical
annular duct has been investigated in a regime of lami-

nar and fully developed ¯ow. Uniform and unequal
temperatures have been prescribed on the inner and
outer boundary walls. The local energy and momen-
tum balance equations as well as the stress±strain con-

stitutive relation have been written in a dimensionless
form.
It has been pointed out that the dimensionless sol-

ution is uniquely determined by the inverse of the
power-law index m, by the ratio g between the duct
inner and outer radii and by the ratio L between the

Grashof number Gr and the Reynolds number Re. The
dimensionless temperature has been shown to be the
same as in the case of pure conduction and to be inde-
pendent of m and of L: On the other hand, both the

dimensionless shear stress and the dimensionless vel-
ocity depend appreciably on m, g and L:
Analytical expressions which allow the determi-

nation of the dimensionless velocity and of the friction
factors have been obtained. The special cases of mixed
convection for Newtonian ¯uids and of forced convec-

tion for power-law ¯uids have been analyzed. In the
®rst special case, it has been shown that the conditions
for the onset of ¯ow reversal imply the existence of

threshold values for jLj, which depend on g: When
these threshold values are exceeded, ¯ow reversal
occurs either next to the inner boundary wall or next
to the outer boundary wall. In the second special case,

an analytical expression of the dimensionless velocity
distribution has been obtained and a comparison with
the results reported by Fredrickson and Bird [25] has

been performed, revealing a fair agreement.
In the general case of mixed convection for power-

law ¯uids, the ¯ow reversal conditions have been inves-

tigated. As for Newtonian ¯uids, ¯ow reversal occurs
when threshold values of jLj are exceeded. These
threshold values depend both on g and on m and, for
a ®xed value of g, are increasing functions of m. As a

consequence, dilatant ¯uids need smaller values of jLj
than pseudoplastic ¯uids in order to display ¯ow rever-
sal. For a ®xed m, the threshold value of jLj for the

onset of ¯ow reversal at the outer boundary is a mono-
tonic increasing function of g: On the other hand, the
threshold value of jLj for the onset of ¯ow reversal at

the inner boundary depends non-monotonically on g:
More precisely, for every m, there exists a value of g
such that this threshold value is minimum.
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Appendix A

The hypergeometric function is de®ned as

2F1�a, b; w; z� �
G�w�

G�a�G�b�
X1
j�0

G�a� j�G�b� j�
j!G�w� j� z j:

The Euler gamma function is de®ned as

G�z� �
�1
0

tzÿ1eÿt dt:

The incomplete Euler beta function is de®ned as

Bz�a, b� �
�z
0

taÿ1�1ÿ t�bÿ1 dt:
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